What We Learned Building

Al FeaturesizZ a1l

Yannis Rizos | Epignosis | Mindstone Practical Al Meetup | Athens | 18-06-2025

The Town Planner's View

Al is not the product - it's one in a larger system

The IR lele MR aleidusers interact with

Al development is 5% model behavior, ElsyRsIalellaEEgaleKElifelq

At the HeellXelMEelEIIAVIES you can't just experiment and hope for the best

What We've Built

Al-powered authoring (full units from

single prompt)

Inline Authoring Tools

embedded in standard course editor

Course Translation

entire courses across languages

Skills
Al-powered skill definition and

content linking

Learning Coach

Al assistant for learners (soon)

Learning Paths Personalization

adaptive course sequences (soon)

LLMs Are Different

external API calls, not local libraries behavior varies based on subtle

o inputs
Probabilistic
same input may not yield same Unpredictable latenc

output especially under load

Expensive

measurable monetary cost for every

call

What This Actually Means
Need planning

Must handle probabilistic nature of responses
alell[¥ellgleltfe]gls cannot be eliminated - they must be contained

Reasoning-heavy or multi-step tasks suffer from [glfe]aRlelt=]gle

Avoid LLMs in [fitlefe|eleldy) Unless absolutely necessary

results, jobs, low-priority processing

Who Owns What

Prompt handling, API surfaces, Do not call LLMs directly
infrastructure Interact with stable, well-defined
Logging and observability, recovery interfaces

logic

Focus on user-facing value, not

Cost and performance control prompt logic and LLM internals

Prompts Are Not Strings

Prompts are engineering Tightly constrain retrieval and

response scope

Centralized

Logic must never be encoded into
Versioned

prompts
Tested

Control flow and workflows
implemented in code

Prompts are purely
content-generating inputs

Failure Is Expected

System designed for failure Offline modes required

Retry logic, circuit breakers, graceful Product must function if model

degradation unavailable

Precomputed fallback outputs Cached responses or degraded
workflows

Human-in-the-loop mechanisms

Avoid hard failures in core flows

Good UX mitigates bad Al

Metrics From Day One

Every Al job logs structured
Events and exposed to Product
Xeiclelelelel glele]e) Errors, latency, user behavior

Same event infrastructure powers [fe]t=}ligglit[gle

Nothing ships without

Architecture Drives Decisions

Testabilit Explainabilit
Observabilit Cost control

Version stabilit

Architecture Drives Decisions

Model selection is deliberate

Smaller, faster, cheaper models for

narrow/frequent tasks

Larger, expensive models for

quality-intensive work

Modular provider, model and prompt

configurations

Concurrency is critical
Al jobs run in parallel when safe

Use async primitives, avoid

sequential execution

one more slide ;)

The Big Picture

Focus on the not the model

Engineering matters more than Al experimentation
Design for not as afterthought

Make decisions based on not intuition

Organizational matter

Path from prototype to production is

Thank you!

